Why HCC Recapture is Not Enough

Why HCC Recapture is Not Enough

HCC code recapture of previously documented, or "known", conditions is a starting point - not a complete strategy - for assessing risk. Recapture updates a patient's risk profile based on codes submitted to payers in the previous calendar year, which does not factor in many common scenarios.

Incorporating the full picture of risk - including new and suspected diagnoses as well as previously documented conditions - into stratification, care management and RAF score calculations is vital to success in risk-based arrangements. Let's explore some of the scenarios that HCC recapture of known conditions does not take into account.

Conditions that are risk-adjustable, but a non-risk-adjustable code has been used instead

Obesity is a common example of this issue. Any patient who has a BMI greater than 40 qualifies as morbidly obese. However, often only the BMI for these patients is documented, and not the corresponding diagnosis of morbid obesity. Without the additional morbid obesity code, the BMI diagnosis carries no HCC value and therefore would not be logged by recapture tools. Bronchitis is another example where a risk-adjustable code is often applicable, but not used.  If bronchitis is coded but not specified as acute or chronic - it does not map to an HCC code. Chronic bronchitis, on the other hand, does contribute to a patient's risk score.

Conditions that remain unresolved or are unresolvable but have not been addressed during the current calendar year

Many previously documented chronic conditions persist for patients which are not regularly documented through claims systems, encounter forms or superbills. An amputation, for example, might not be evaluated unless the patient complains of skin issues. Or an old myocardial infarction, which causes permanent damage to the heart muscle, might not be discussed during an encounter years after diagnosis if the patient is being treated for an unrelated issue.

Conditions that have progressed or developed complications

Many chronic conditions progress even when caught early and managed properly. If a condition was coded in a prior year, it's possible that the disease has progressed or the patient has developed related complications. For example, a patient with diabetes could have developed retinopathy or a renal manifestation. Recapturing a condition that has progressed or developed a complication can be a more significant case of undercoding than is often realized. Chronic conditions with complications usually have a higher HCC weight than conditions without complications, and, in some instances, the condition without a complication does not have any HCC weight, so recapturing in this scenario would almost always translate to an artificially lower RAF score. In the case of diabetes, ICD-10 codes for diabetes with complications carry a RAF three times higher than a diagnosis of diabetes uncomplicated.

Conditions that can be predicted based on other health attributes

Predictive modeling is a technique that can be used to detect the statistical probability of additional diagnoses based on a comparison to patients with similar backgrounds and conditions. These algorithms look for similarities among patients with a shared condition, and reviews the similarities in context of the patient’s profile to determine if the shared traits are predictive. The suspected diagnoses can then be presented to providers at the point-of-care for assessment. Due to recent advancements in AI and machine learning, predictive modeling has become an increasingly common and reliable method of identifying undiagnosed conditions for  earlier, more effective care.